rialto.runner package
Submodules
rialto.runner.config_loader module
rialto.runner.date_manager module
- class rialto.runner.date_manager.DateManager[source]
Bases:
object
Date generation and shifts based on configuration
- static all_dates(date_from: date, date_to: date) List[date] [source]
Get list of all dates between, inclusive
- Parameters:
date_from – starting date
date_to – ending date
- Returns:
List[date]
- static date_subtract(run_date: date, units: str, value: int) date [source]
Generate starting date from given date and config
- Parameters:
run_date – base date
units – units: years, months, weeks, days
value – number of units to subtract
- Returns:
Starting date
- static run_dates(date_from: date, date_to: date, schedule: ScheduleConfig) List[date] [source]
Select dates inside given interval depending on frequency and selected day
- Parameters:
date_from – interval start
date_to – interval end
schedule – schedule config
- Returns:
list of dates
rialto.runner.runner module
- class rialto.runner.runner.Runner(spark: SparkSession, config_path: str, run_date: str | None = None, rerun: bool = False, op: str | None = None, skip_dependencies: bool = False, overrides: Dict | None = None)[source]
Bases:
object
A scheduler and dependency checker for feature runs
rialto.runner.table module
rialto.runner.tracker module
- class rialto.runner.tracker.Record(job: str, target: str, date: ~.datetime.date, time: ~datetime.timedelta, records: int, status: str, reason: str, exception: str | None = None)[source]
Bases:
object
Dataclass with information about one run of one pipeline.
- date: date
- exception: str | None = None
- job: str
- reason: str
- records: int
- status: str
- target: str
- time: timedelta
rialto.runner.transformation module
- class rialto.runner.transformation.Transformation[source]
Bases:
object
Interface for feature implementation
- abstract run(reader: DataReader, run_date: date, spark: SparkSession | None = None, config: PipelineConfig | None = None, metadata_manager: MetadataManager | None = None, feature_loader: PysparkFeatureLoader | None = None) DataFrame [source]
Run the transformation
- Parameters:
reader – data store api object
run_date – date
spark – spark session
config – pipeline config
metadata_manager – metadata manager
feature_loader – feature loader
- Returns:
dataframe